Hew does a weight unchix anise?

- Spike Tive Dependet Plarkeity (Gerstuar 19.2.2)

- Bi- Poo J. Nsci 1999.

STDP
KEWEL:

$$
\Delta W(\Delta t)= \begin{cases}A_{+} e\left(-|\Delta t| / \tau_{t}\right)>0, & \Delta t>0 \\ & \text { LTP } \\ A-e\left(-|\Delta t| / \tau_{-}\right)<0, & \Delta t<0 \\ & \text { LTD }\end{cases}
$$

Lut $C(\Delta t) d t=P(\Delta t \in[\Delta t, \Delta t+d t])$. "Crose-Covariane density"
(or... Cross Comelatici functio).
THen: $\langle\Delta w\rangle=\int d(\Delta t) C(\Delta t) \Delta w(\Delta t)$
$\sim \frac{d}{d t} W$, ower long timescales

- Self-Consostant Moald of Plastcity in Renurrent Spiving Nets.
$\therefore \lambda^{0} d_{0}^{\prime} W_{i j}$, couplyy amay N narms

from unmodeled vervans

Lt $\tilde{y}_{i}(\omega)=F\left(y_{i}(t)\right)=\frac{1}{\sqrt{2 \pi}} \int_{-\infty}^{\infty} e^{-2 \pi i \omega t} y_{i}(t) d t$
Fner:
Let $c_{i j}(\omega)=F\left(c_{i j}(\Delta t)\right)$. Then $c(i \omega)=\mathbb{i}\left(\tilde{y}_{i}{ }^{k}(\omega) \tilde{y}_{j}^{\prime}(\omega)\right)$ forneor. i.j

Wiener-Hopf Transfonation (Horkus 1972)... Equiralat to followni formal mawpulation.... yieds $c_{i j}(\omega)$

$$
\tilde{y}_{i}(w)={\left.\underset{\substack{\text { Unpertorinul } \\ \text { Spile train }}}{\tilde{y}_{i_{i}}(w)}+\sum_{i} w_{i_{j}} \tilde{c}_{s_{i}}(w) \tilde{y}_{j}(w)\right)}_{(w)}
$$

$$
\vec{y}(w)=\vec{y}_{0}(w)+c_{s}(w) w \vec{y} ; \text { let } \vec{w}=\operatorname{Cs} w(w)
$$

${ }^{1}$ dicganal Man'x

$$
\begin{gathered}
(I-\bar{w}) \vec{y}(w)=\vec{y}_{0}(w) \\
\vec{y}(w)=(I-\bar{w}(w))^{-1} \overrightarrow{y_{x}}(w)
\end{gathered}
$$

$$
\begin{aligned}
& y_{i}(t)=\sum_{k} \delta\left(t-t_{\hat{k}}^{i}\right) \\
& \text { spiwe } \\
& \text { Lixiter reporin aylusion } \\
& \text { Rate: }
\end{aligned}
$$

$$
\begin{aligned}
C(w) & =\mathbb{F}\left(\vec{y}^{*}(w) \vec{y}^{\top}(w)\right) \\
& =\left(I-\bar{w}^{*}(w)\right)^{-1} \underbrace{\mathbb{E}\left(y_{0} / w\right) y_{0}{ }^{\tau}(v)}_{C_{0}(w)})(I-\bar{W}(w))^{-\tau} \\
& =A\left(w_{i} w\right) \quad \text { simple matix functiai }
\end{aligned}
$$

lomerse $F \cdot T . \longrightarrow C(\Delta t)=F^{-1}\left(A\left(\omega_{i \omega}\right)\right)$
iunerse FAT. (Δt)
Ters: $\frac{d}{d t} w=\int d(\Delta t) \underbrace{\Delta w(\Delta t)}_{\text {STDP Kemil }} F^{-1}(A(w ; w))(\Delta t)$

$$
\frac{d}{d t} w=B(w)
$$

Closed form, explicit ODE for w'.

- Ockert Dairan, PlosCB $2 a 15$ Cseide)

